SPH 10000TL-HU-US Quick Guide (13). Antenna port ## 1. General Information-specification - (1). Host panel - (2). LCD display - (3). Wiring box cover - (4). Wall mounting hole - (5). Power On/Off button - (6). PV switch - (7). Battery input port - (8). COM port - (9). PV input port - (10). GRID port - (11). GEN port - (12). LOAD port - 1.Before installing the device, check that the package contents are intact and complete against the packing list If any damage is found or any component is missing, contact your dealer. - 2. This quide will be updated from time to time due to product upgrades or other reasons. Unless otherwise agreed this document is intended as a quide only. - All information and suggestions do not constitute an express or implied warranty. The final interpretation of the content is at Growatt's discretion. - 3. This document is for quick installation guide only. For details, please refer to the User Manual. - 4. Machine damage caused by failure to follow the content is not covered by the warranty. ## 2.Installation ## 2.1 System Overview ## 2.2 Installation requirements #### 2.3 Wall mounting - 1. Please make sure that the thickness of the wall for inverter installation is more than 70mm - 2. Place the mounting template horizontally on the wall, Make sure it is aligned. - 3. Please mark the holes in the 4 mounting holes of hole pattern. - 4. Drill a 65 mm deep hole at the marking with a 12 mm drill bit. - 5. Please knock the expansion screw rubber sleeve into the hole on the wall, and then screw on the Expansion screw. - 6. Please hang the inverter on the expansion screws, and then tighten the expansion screws. 1 #### 3. Electronic connection Please prepare the cable before connecting as follows. | NO | Cable name | Туре | | Recommend model | | |----|---------------------------|-----------------|----------------------------------|------------------|--| | 1 | Battery input wire | Red and black | multi-core copper | 2/0AWG or 4/0AWG | | | 2 | AC (Grid, GEN, Load) wire | Two different | color stranded wire | 6AWG | Please make sure all switch wiring. For personal safety, please electricity. | | 3 | PV input wire | Photovoltaic o | dedicated cable | 10AWG | | | 4 | Grounding wire | Single yellow- | green stranded wire | 12AWG | | | 5 | Matanagananiaatian ashla | RS485 A+ | Min.3-wire shielded twisted pair | 0.2-1 mm²/ 24-18 | | | | Meter communication cable | RS485 B- | | AWG | | | 6 | Other communication | CAT5E suggested | | / | | ches are OFF before e do not operate with #### 3.1 Battery module connection #### 3.1.1 Battery connection - 1.Strip 0.59 inches (15 mm) of the battery cable insulation. - 2. Insert the battery cable into the open crimping pliers. - 3.Insert the tubular terminal and press the crimping pliers. - 4. According to the labels on the terminal blocks(BAT+ BAT-), connect the battery cable to the corresponding terminal blocks through the circular opening. - 5. Use a suitable screwdriver to install the battery cable and tighten the tightening bolts clockwise. Note: It is strictly forbidden to connect the positive and negative poles of the battery input terminals reversely! #### 3.1.2 Temperature sensor connection for lead-acid battery - 1. Connect one end of the temperature sensor cable to the function port(1 red 2 black) in the wiring box. - 2. Take the other end of the temperature sensor cable from hole com1 and attach it to the lead-acid battery. The connection steps are shown on the left. Note: Only for Lead-acid battery. #### 3.1.3 RS485 and CAN connection - 1. Connect one end of the BMS communication cables to the BMS communication port in the inverter wiring box. - 2.Lead the other end of the BMS communication cables from hole COM2 and connect it to the lithium battery communication port. The connection steps are shown on the left. 2 Note: Only for lithium battery. #### 3.2 Grid connection, generator connection and load connection The AC circuit breaker must be turned off before connecting the grid, load and generator ports. - 1.Strip 0.7inches(18 mm)of the AC cable insulation. - 2. Insert the AC cable into the open crimping pliers. - 3.Insert the tubular terminal and press the crimping tool. - 4. According to the labels on the terminal blocks (Grid L1, N, L2)(GEN -L1,N, L2)(Load - L1, N, L2), insert the AC cable directly into the corresponding terminal block through the circular opening. #### 3.3 PV Module connection #### 3.3.1 PV connection 1.Strip 0.39 inches(10 mm) of PV cable insulation. - 2. Insert the PV cable into the open crimping pliers. - 3.Insert the tubular terminal and press the crimping pliers. 4. According to the labels on the terminal blocks (PV1+, PV1-)(PV2+, PV2-)(PV3+, PV3-), insert the PV cable directly into the corresponding terminal block through the circular opening. Note: It is strictly forbidden to connect the positive and negative poles of the PV input terminals reversely. #### 3.3.2 Rapid shutdown - 1. Mounting the RSD initiation switch - a. Using a Philips head screwdriver, unscrew the 4 plastic screws of the assembled RSD initiation switch to open the enclosure. - b. Use the base of the enclosure to mark 4 holes on the wall and drill the holes out. Insert the wall anchors into the holes. - c. Align the holes of the RSD initiation switch base with the holes in the wall. Using a Philips screwdriver, screw the self tapping screws through the enclosure base into the wall anchors. - 2. Wiring the RSD initiation switch - a. Install RSD switch wire to the COM input ,use appropriate conduit fittings and bond where necessary. Run the signal wire. - b. Connect the wire to the RSD switch as shown. - c. Reinstall the RSD initiation switch cover and tighten the plastic screws to secure. - d. Remove the 3-pin connector from terminal CN17 and remove the jumper across the - e. Insert the wire in the 3-pin conductor's positions 1 and 3, as shown. - f. Replace the connector in the terminal CN17 and replace the inverter wire box cover. ## 3.4 Meter or CT Connection Connect the white line of CT1 to the functional port No. 3, and the black line to the functional port No, 4. Before installing the CT to the live wire, please make sure that the CT is connected to the inverter port correctly. Connect CT1 to Grid L1 and make sure that the arrow points from CT to load. Connect the white line of CT2 to the functional port No, 5, and the black line to the functional port No, 6. Before installing the CT to the live wire, please make sure that the CT is connected to the inverter port correctly. Connect CT2 to Grid L2 and make sure that the arrow points from CT to load. The default CT direction is the arrow on the CT pointing from the grid to the machine. 3 The CT direction is settable. #### 3.5 Grounding The Ground cable should be connected to the ground terminal on the grid side to prevent electric shock. - 1. Strip 0.39 in.(10 mm) of the ground cable insulation. - 2. Open the bolt, connect the ground cable and tighten the bolt clockwise with screwdriver. Note: Make sure the Ground cable is connected to the ground terminal. ## 3.6WIFI Connection 1. Take out the antenna from the inverter accessory bag. 2. Install the antenna to the position marked in the picture on the left. ## 4.Checking before power on | No | Check Item | Acceptance Criteria | No | Check Item | Acceptance Criteria | |----|-----------------------|---|----|-----------------------------------|---| | 1 | Inverter installation | The inverter is installed correctly, securely and reliably. | 6 | Cable connections | The battery cable, AC cable,PV cable, Ground cable, and other signal cable are connected correctly, securely, and reliably. | | 2 | Cable layout | Cables are routed properly as required by the customer. | 7 | Unused terminals and ports | Unused terminals and ports are fitted with waterproofing bolts or watertight caps or drill guide unopened. | | 3 | Cable tie | Cable ties are secured evenly, with no sharp protrusions. | 8 | Cable routing pipe sealing | All cable routing pipes at the bottom of the enclosure are sealed. | | 4 | Grounding | The ground cable is connected correctly securely, and reliably. | 9 | The cleanliness of the wiring box | Please make sure the wiring box is clean and tidy | | 5 | Switches | Switches connecting to the SPH 10000TL-HU-US are in the OFF position. | 10 | Installation
environment | An appropriate installation space has been chosen, and the installation environment is clean and tidy. | #### 5.Power on/off the inverter Before power on, please make sure all of the voltage and current are in the range of specification of the inverter. Otherwise it will be damage to the inverter. The steps of turn on the inverter as follow: - 1. Turn on the breaker between battery and the inverter. - 2. Turn on the PV switch. - 3. Turn on the backfeed breaker between Grid and the inverter. - 4. If need to setup the inverter, please refer to chapter 7 of inverter's user manual for details. - 5. The shutdown steps are opposite to the above order. ## 6.Status of the inverter Inverter comes with three LED indicators. From the front cover top to bottom, it shows the indicator of AC/INV Charge and Fault. | | LED Indicator | Messages | | |--------|---------------|----------|---------------| | | GREEN | Light | Powered by AC | | AC/INV | | Flicker | Powered by DC | | CHARGE | GREEN | Light | Full battery | | CHARGE | | Flicker | Charging | | FALUE | 050 | Light | Error | | FAULT | RED | Flicker | Warning | ## 7.Service and contact Shenzhen Growatt New Energy CO.,LTD - 4-13/F, Building A, Sino-German(Europe) Industrial Park, Hangcheng Ave, Bao'an District, Shenzhen, China - **T** +86 0755 2747 1942 - E service@ginverter.com - W
www.ginverter.com 4 GR-UM-180-A-00 **Growatt New Energy** Download Manual # Shenzhen Growatt New Energy Co., Ltd. 4-13/F, Building A, Sino-German (Europe) Industrial Park, Hangcheng Blvd, Bao'an District, Shenzhen, China **E** service@growatt.com **W** en.growatt.com For local customer support, please visit https://en.growatt.com/support/contact GR-UM-137-A-03 (PN:044.SK0013703) Grid-Hybrid Inverter SPH TL-HU-US/(B) 8K-10K User Manual # **About This Document** This document introduces Grid-Hybrid Inverter SPH TL-HU-US/(B) 8K-10K in terms of its installation, electrical connection, operation, commission, maintenance, and troubleshooting. Before installing and operating Grid-Hybrid Inverter ensure that you are familiar with the product features, functions, and safety precautions provided in this document. | Symbol | Description | |---------|---| | DANGER | Indicates a hazardous situation which, if not avoided, will result in death or serious injury. | | WARNING | Indicates a potentially hazardous situation, if not avoided, could result in serious injury or death. | | NOTICE | Is used to address practices which are not safety relevant. | # Change history Version 1.3 First release # **Table of Contents** | 11 | nformation on this Manual | • | |-----|---|-----| | | 1.1 Overview | | | | 1.2 Intended Audience | | | | 1.3 Safety Instructions | | | 21 | Product Introduction | | | | 2.1 Product Overview | | | | 2.2 Function Port Definition | | | | 2.3 Other Port Function. | | | | 2.4 Product Size | | | | 2.5 Product Features | | | | 2.6 System Architecture | | | 3 | nstallation | | | | 3.1 Parts List | | | | 3.2 Mounting Instructions | | | | 3.3 Battery Connection | 1 | | | 3.4 Grid Connection and Backup Load Connection | 1 | | | 3.5 PV Connection | 1 | | | 3.6 Meter or CT Connection | 1 | | | 3.7 Earth Connection | 2 | | | 3.8 Dip Switch Status | 2 | | | 3.9 Fan Replacement | 2 | | | 3.10 Wiring System for Inverter | 2 | | | 3.11 Split Phase (120/240 Vac) Parallel Connection | 2 | | | 3.12 2Pcs Parallel Connection for 120/208 Three Phase | 2 | | | 3.12 3Pcs Parallel Connection for 120/208Three Phase | 3 | | | 3.13 6Pcs Parallel Connection for 120/208 Three Phase | 3 | | 4 (| Operations on the ShineTools App | 3 (| | | 4.1 Overview. | 3 | | | 4.2 APP Download | 3 | | | 4.3 Login | 3 | | | 4.4 Direct WiFi/Bluetooth Commissioning Tool | 3 | | 4.5 Commissioning of SPHTL-HU-US/(B) 8K-10K | 38 | |---|----| | 4.6 Parameter Setting (Specific to the App display setting items) | 39 | | 5 Operations on The ShinePhone APP | 40 | | 5.1 Overview | 40 | | 5.2 APP Download | 41 | | 5.3 APP Introduction | 41 | | 6 Operation | 49 | | 6.1 Power ON/OFF | 49 | | 6.2 Operation and Display Panel | 49 | | 7 Main Screen | 50 | | 7.1 Touch Screen Operation Flow Chart | 50 | | 7.2 Main Screen | 51 | | 7.3 Setting Menu | 54 | | 7.4 Basic Settings | 55 | | 7.5 Battery Settings | 55 | | 7.6 Operating Modes | 57 | | 7.7 Grid Settings | 62 | | 7.8 Generator Settings | 64 | | 7.9 Advanced Functions | 65 | | 7.10 Device Info | 66 | | 8 Error Information and Processing | 67 | | 9 Data Sheet | 73 | | 10 Appendix I | 75 | | 11 Appendix II | 75 | | 12 Appendix III | 76 | | 13 Appendix IV | 76 | | 14 Appendix V | 76 | | 15 Appendix VI | | # 1 Information on this Manual #### 1.1 Overview This manual is intended to introduce the SPH TL-HU-US/(B) 8K-10K Inverters manufactured by Shenzhen Growatt New Energy Co, Ltd. (hereinafter referred to as Growatt) in terms of the installation, operation, commissioning, maintenance and troubleshooting. Please read this manual carefully before using the product, and keep it in a place that is easily accessible to installation, operation and maintenance personnel. The content is continually reviewed and amended as necessary. Growatt reserves the right to make changes to the material at any time and without notice. #### 1.2 Intended Audience Only qualified electrical technicians are allowed to install SPHTL-HU-US/(B) 8K-10K Inverters. Reading through this manual and observing all the precautions, qualified electrical technicians will be able to properly install, troubleshoot and configure the SPHTL-HU-US/(B) 8K-10K Inverters. If any questions arise during installation, you can visit www.growatt.com and leave a message. ## 1.3 Safety Instructions - 1. Please read this manual carefully before installation. Damages caused by failure to follow the instructions in the manual are beyond the warranty scope. - 2. Only qualified and trained electrical technicians are allowed to perform operations on the Storage Inverter. - 3. During installation, please do not touch other parts inside the equipment except wiring terminals. - 4. Ensure that all electrical connections comply with local electrical standards. - 5. For maintenance, please contact designated local installation and maintenance personnel. - 6. Before operating the inverter in the on-grid mode, ensure that you have obtained any permission needed from the local electricity grid network operator. - a. Electrical installation, repairs and conversions may only be carried out by electrically qualified persons. - b. DO NOT connect the grid to the Load Output Breaker. - c. DO NOT reverse the polarity of batteries. Damage WILL occur. - d. The components in the inverter are live. Touching live components can result in serious injury or death. - e. Non professional, please do not open the inverter. - f. Beware of high PV voltage. Please turn-off the DC switch of PV Panel output before and during the installation to avoid electric shock. - h. Beware of large current of the battery output. Please turn-off the battery module before and during the installation to avoid electric shock. - a. Make all electrical connections (e.g. conductor termination, fuses, PE, connection, etc.) in accordance with prevailing regulations. When working with the inverter powered on, adhere to all prevailing safety regulations to minimize risk of accidents. b. Systems with inverters typically require additional control (e.g. - switches, disconnects) or protective devices (e.g. fusing circuit breakers) depending upon the prevailing safety rules. c. ALL terminals/breakers including battery, MPPT, and AC breaker - inputs should only have one conductor connecting to them.d. Anytime the inverter has been disconnected from the power - d. Anytime the inverter has been disconnected from the power network, use extreme caution as some components can retain charge sufficient to create a shock hazard; to minimize occurrence of such conditions, comply with all corresponding safety symbols and markings present on the unit and in this manual. - Ensure all covers and doors are closed and secure during operation. All operations regarding transport, installation and start-up, including maintenance must be operated by qualified, trained personnel and in compliance with all prevailing codes and regulations. - f. Although designed to meet all safety requirements, some parts and surfaces of Inverter are still hot during operation. To reduce the risk of injury, do not touch the heat sink at the back of the PV-Inverter or nearby surfaces while Inverter is operating. WARNING - a. Please carefully read this manual before any work is carried out on this inverter, the installation, please keep this manual carefully stored and easy to access at any time. - b. The qualified personnel should have had training in the installation and commissioning of the electrical system as well as dealing with hazards, also they should have the knowledge of the manual and other related documents. As the installer or operator they are required to be familiar with local regulations and directives. DANGER # **2 Product Introduction** ## 2.1 Product Overview #### **SPH 10000 TL-HU-US** - 1: LCD Display - 2: Inverter Status LEDs - 3: Power ON/OFF button - 4: PV Disconnect - 5: Battery Input - 6: Function Port - 7: PV Input - 8: Upgrading Port(USB) - 9: Grid Port - 10: Generator Input - 11: Load Port - 12: Parallel-A Port - 13: Parallel-B Port - 14: Host Computer Port - 15:BMS Port #### SPH 8K-10K TL-HU-US(B) - 1: LCD Display - 2: Inverter Status LEDs - 3: Power ON/OFF button - 4: PV Disconnect - 5: Function Port - 6: 250A Battery Breaker - 7: Battery Input - 8: PV Input - 9: Neutral / Ground Bus Bar - 10: Upgrading Port(USB) - 11: BMS Port - 12: Host Computer Port - 13: Parallel-B Port - 14: Parallel-A Port - 15: AC Breaker(Grid 100A/Gen 63A/ Load 100A) #### 2.2 Function Port Definition **TEMP (1,2):** Battery temperature sensor for lead acid battery. **CT-L1 (3,4):** Current transformer (CT1) for "Export Limit to Home Load mode" mode clamps on L1 when in split phase system. **CT-L2 (5,6):** Current transformer (CT2) for "Export Limit to Home Load mod" mode clamps on L2 when in split phase system. **G-start (7,8):** Generator start signal should be connected to the CON board CN9 terminal 7/8 position, G-startnominal open circuit. If the user wants to start the generator, G-start nominally closes the port. G-valve (9,10): Reserved. #### 2.3 Other Port Function #### SPH 8K-10K TL-HU-US(B) RSD (Cn17): Provide 12Vdc output when inverter is on. ATS (Cn16): 240V output port when inverter is on. BMS (Cn4): RS 485 (1B,2A),CAN (4H,5L) port for battery communication. Parallel A (Cn8): Parallel communication port 1 (CAN interface). Parallel B (Cn7): Parallel communication port 2 (CAN interface). Meter (Cn6): For energy meter communication. Some hard ware versions don't have this port. USB(CN22): USB port. Host Computer (CN5): Upper Computer Port #### 2.4 Product Size Inverter Size (1mm=0.03937inch) SPH 8K-10K TL-HU-US Inverter Size (1mm=0.03937inch) SPH 8K-10K TL-HU-US(B) #### 2.5 Product Features - -Supports Split phase 120/240Vac, Three-phase 120/208Vac
system. - -Configurable battery charging current/voltage based by touchscreen setting. - -Configurable AC/Solar/Generator Charger priority by touch screen setting. - -Compatible with grid voltage or generator power. - -Can be started by photovoltaic, grid or battery. - -Time of use function. Smart battery charger design for optimized battery performance. - -Supporting WiFi/ 4G/ Bluetooth monitoring. - -Smart settable three stages MPPT charging for optimized battery performance - -Overload/Over temperature/Short circuit protection. - -Programmable supply priority for battery or grid. - -Grid bypass current maximum value can reach 62.5A.AC port has a 90A relay, and the software will trigger protection. when the maximum bypass current is reached. - -Programmable multiple operation modes: On Grid Mode, Export Limit to Backup Load, Export Limit to Home Load. #### 2.6 System Architecture The following illustration shows basic application of this inverter. It also includes following devices to have a complete running system. - -Generator or Utility - -PV modules - -Battery Consult with your installer or Growatt engineer for other possible system architectures depending on your requirements This inverter can power all kinds of appliances in home or office environment, including motor type appliances such as refrigerator and air conditioner. # 3 Installation #### 3.1 Parts List Check the equipment before installation. Please make sure nothing is damaged in the package. You should have received the items in the following package: | Item | Description | | А | В | C | D | |------|-------------------------------------|------|-------------|-----------------|-------------|--------| | Α | Hybrid inverter | 1 | General | GARDNITT STREET | ĦĦ | | | В | User manual | 1 | | • | WH. | | | С | Wall Bracket | 2 | | == | F F | V | | D | L-type Hexagon wrench | 1 | | | | | | E | Stainless steel anti-collision bolt | 4 | E | F | G | Н | | F | Battery temperature sensor | 1 | ——— | 1 | П | | | G | Tubular terminal:6AWG,10AWG | 9+12 | | | | E | | Н | Rod antenna | 2 | | | | | | | Spare Fuse | 1 | Į | J | K | L | | J | Parallel communication cable | 2 | | n | | \sim | | К | Mounting template | 1 | | * | 0.6 | | | L | Current Transformers(CT*2) | 2 | | A | | | | М | RSD Emergency Stop Switch | 1 | M | <i>t</i> ⁄
N | 0 | В | | N | ATS terminal | 2 | | | © | r | | 0 | Battery terminal | 2 | | | | | | Р | Magnetic ring | 1 | | A | <u> </u> | | # 3.2 Mounting Instructions #### **Installation Precaution** This Hybrid inverter is designed for outdoor use(IP65), Please make sure the installation site meets below conditions: - -Not in direct sunlight. - -Not in areas where highly flammable materials are stored. - -Not in potential explosive areas. - -Not in the cool air directly. - -Not near the television Antenna or antenna cable. - -Not higher than altitude of about 2000 meters above sea level. - -Not in environment of precipitation or humidity(>95%). #### Considering the following before selecting where to install: - -Please select a vertical wall with load-bearing capacity for installation, suitable for installation on concrete or other non-flammable surfaces, installation is shown below. - -Install this inverter at eye level in order to allow touch screen display to be read at all times. - -The ambient temperature should be between $-25\sim60^{\circ}\text{C}$ to ensure optimal operation. - -Keep the inverter at a distance from other objects and surfaces as shown below. - -For proper air circulation to dissipate heat, allow a clearance of approx.50cm to the side and approx.50cm above and below the unit. And 1000mm to the front. - -If using CTs included in the package plan accordingly considering the length restriction. CTs included in the package are 10m(32.8feet)long. #### Mounting the inverter Remember that this inverter is heavy! Caution when lifting out from the package. 1.Please Make sure that the thickness of the wall for inverter installation is more than 70mm. 2. Please Place the template horizontally on the wall and confirm the level by level. Θ 10 - 3. Please mark the holes in the 4 mounting holes of hole pattern. - 4. Drill a hole with a depth of 65mm at the mark with a drill of 12mm - 5. Please knock the expansion screw rubber sleeve into the hole on the wall, and then screw on the expansion screw. - 6. Please hang the inverter on the expansion screws, and then tighten the expansion screws. # 3.3 Battery Connection For safe operation and compliance, a separate DC over-current protector or disconnect device is required between the battery and the inverter. A 250A breaker is installed in the inverter of version (B) on the battery side In some applications, disconnect switch may not be required but over-current protectors are still required. | Model | Wire Size | | | |------------------------|-----------------------------|--|--| | SPH TL-HU-US/(B)8K-10K | 00AWG*1 or 2AWG*2 or 4AWG*3 | | | All wiring must be performed by a professional person. Connecting the battery with a suitable cable is important for safe and efficient operation of the system. To reduce the risk of injury, refer to chart for recommended cables. Installers are reminded that adherence to local electrical codes and regulations is mandatory. Installers are encouraged to exercise caution, seek professional advice when necessary, and undertake installations with due diligence and in accordance with established electrical standards and regulations. SPH TL-HU-US/(B) 8K-10K has two battery input ports, so you could choose to choose to connect one battery clusters to it. Please follow below steps to implement battery connection: - 1. Please choose a suitable battery cable with correct connector which fits into the battery terminals. - 2. Use a Sleeve to unscrew the bolts and fit the battery connectors in, then fasten the bolt by the screwdriver, make sure the bolts are tightened in clockwise direction - 3. Make sure polarity at both the battery and inverter is correctly connected #### **SPH 10000 TL-HU-US** SPH 8K-10K TL-HU-US(B) # Temperature sensor connection for lead-acid battery SPH 10000 TL-HU-US #### SPH 8K-10K TL-HU-US(B) # 3.4 Grid Connection and Backup Load Connection Before connecting to grid, please install a separate AC breaker between inverter and grid. Also, it is recommended to install an AC breaker between backup load and inverter. This will ensure the inverter can be securely disconnected during maintenance and fully protected from over current. The recommended of AC breaker is 80A for 10kw.There are three terminal blocks with "Grid" "Load" and "GEN" markings. Please do not misunderstand input and output connectors. All wiring must be performed by a qualified personnel. It is very important for system safety and efficient operation to use appropriate cable fo AC input connection. To reduce risk of injury, please use the proper recommended cable as below. | Model | Wire Size | | | |------------------------|-----------|--|--| | SPH TL-HU-US/(B)8K-10K | 6AWG | | | Please follow below steps to implement AC input/output connection: - 1. Before making Grid, load and Gen port connection, be sure to turn off AC breaker first. - 2. Remove insulation sleeve 10 mm for positive and negative conductors - 3. Use crimping pliers to press the 6AWG cable onto the attached tubular terminal to form a square. - 4. Install the AC conduit to the AC grid output opening (Grid, Gen, Load). Use appropriate conduit fittings and bond where necessary. - 5. Terminate the AC conductors to the appropriate terminal. #### **SPH 10000 TL-HU-US** | L2 | N | L1 | L2 | N | L1 | L2 | N | L1 | |------|---|----|-----|-----|----|------|-----|----| | Grid | | | GEN | | | Load | | | | CN4 | | | | CN5 | | | CN6 | | #### SPH 8K-10K TL-HU-US(B) Be sure that AC power source is disconnected before attempting to wire it to the unit. Appliances such as air conditioner are required at least 2-3 minutes to restart because it is required to have enough time to balance refrigerant gas inside of circuit. If a power shortage occurs and recovers in short time, it will cause damage to your connected appliances. To prevent this kind of damage, please check manufacturer of air conditioner if it is equipped with time-delay function before installation. Otherwise, this inverter will trigger overload fault and cutoff output to protect your appliance but sometimes it still causes internal damage to the air conditioner #### 3.5 PV Connection Before connecting to PV modules, please install a separate DC circuit breaker between inverter and PV modules. It is very important for system safety and efficient operation to use appropriate cable for PV module connection. To reduce risk of injury, please use the proper recommended cable size as below. SPH TL-HU-US/(B) 8K-10K comes with an integrated Tigo/Aps RSD transmitter. No need to install/connect or do anything with the integrated RSD transmitter. Only need to wire PV (+) and (-) in PV port on inverter (The inverter extends the wires from each PV strings connected to pass them through the transmitter core and transmit the keep alive signal completing the rapid shutdown. PS.RSD functionality is not available in Mexico and Colombia. | Model | Wire Size | |------------------------|-----------| | SPH TL-HU-US/(B)8K-10K | 10AWG | To avoid any malfunction, do not connect any PV modules with possible current leakage to the inverter. For example, grounded PV modules will cause current leakage to the inverter. When using PV modules, please be sure NO grounding. It is requested to use PV junction box with surge protection. Otherwise, it will cause damage on inverter when lightning occurs on PV modules. #### 3.5.1 PV Module Selection When selecting proper PV modules, please be sure to consider below parameters 1.0pen circuit Voltage (Voc) of PV modules should not exceed max PV array open circuit voltage of inverter. 2.Open circuit
Voltage (Voc) of PV modules should be higher than min start voltage. | Inverter Model | SPH 10000TL- SPH 8000TL-HU- SPH 10000TL-H | | | | | |---------------------------------------|---|-------|-------|--|--| | Inverter Modet | HU-US | US(B) | US(B) | | | | PV Input Voltage | 370V(130V-525V) | | | | | | PV Array MPPT Voltage Range 150V-450V | | | | | | | No. of MPPT Trackers | 3 | | | | | | No. of Strings per MPP Tracker | 2+2+2 | | | | | #### 3.5.2 PV Module Wire Connection Please follow below steps to implement PV module connection: - 1. Remove insulation sleeve 10 mm for positive and negative conductors. - 2. Use crimping pliers to press the 10AWG cable onto the attached tubular terminal to form a square. - 3. Check correct polarity of wire connection from PV modules and PV input connectors. Then, connect positive pole(+) of connection wire to positive pole (+) of PV input connector. Connect negative pole (-) of connection wire to negative pole (-) of PV input connector. Close the switch and make sure the wires are tightly fixed. - 4. Parallel strings per MPPT must be the same Voltage. - a. PV1 A/B must be the same voltage if using both strings. - b. Panels on the same MPPT CAN face different directions. - 5. Terminate the PV strings to the appropriate terminal. Make sure the wire is tight and secure. #### **SPH 10000 TL-HU-US** | 1 | 2 | 3 | 4 | 5 | 6 | |------|------|------|------|------|------| | Pv1+ | Pv2+ | Pv3+ | PV1- | Pv2- | Pv3- | | Pv1+ | Pv2+ | Pv3+ | PV1- | Pv2- | Pv3- | #### SPH 8K-10K TL-HU-US(B) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |----|----|----|----|----|----|----|----|----|----|----|----| | Pv | 1+ | Pv | 2+ | Pv | 3+ | PV | 1- | Pv | 2- | Pv | 3- | # 3.5.3 Rapid Shutdown The inverter includes a rapid shutdown system that complies with 2017 and 2020 NEC 690.12 requirements. In case of emergency, press the rapid shutdown button that cut off the RSD power supply, thus stopping the inverter AC output, and the PV conductors voltage will be reduced to less than 30V within 30 seconds 1. Mounting the RSD initiation switch - a. Using a Philips head screwdriver, unscrew the 4 plastic screws of the assembled RSD initiation switch to open the enclosure. - b. Use the base of the enclosure to mark 4 holes on thee wall and drill the holes out. Insert the wall anchors into the holes. - C. Align the holes of the RSD initiation switch base with the holes in the wall. Using a Philips screwdriver, screw the self tapping screws through the enclosure base into the wall anchors. #### 2. Wiring the RSD initiation switch - a. Install RSD switch wire to the COM input ,use appropriate conduit fittings and bond where necessary. Run the signal wire. - b. Connect the wire to the RSD switch as shown. - c. Reinstall the RSD initiation switch cover and tighten the plastic screws to secured. - d. Remove the 3-pin connector from terminal CN17 and remove the jumper across the pins. - e. Insert the wire in the 3-pin conductor's positions 1 and 3, as shown. - f. Replace the connector in the terminal CN17 and replace the inverter wire box cover. #### 3.6 Meter or CT Connection | Cable | Meter | Inverter | Туре | Conductor cross-sectional | | |----------------|-----------|----------|---------------|---------------------------|------| | AC wire-L1 | ΦL1 | | solid or | | | | AC wire-L2 | ΦL2 | n/a | n/a but no | stranded wire | 6AWG | | AC wire-N | N | | | but not fine | OAWG | | Ground | PE symbol | | stranded wire | | | | CT-ΦL1 | L1 CT +/- | n/a | - / - | 2/2 | | | CT-ΦL2 | L2 CT +/- | | n/a | n/a | | | Communications | RS485 A+ | | Min. 3-wire | 0.2-1mm²/24-18AWG | | | cable | RS485 B- | | shielded | 0.2-1111111 /24-18AWG | | #### **SPH 10000 TL-HU-US** # CT Connection(How to set CT, please refer to 7.9) SPH 10000 TL-HU-US #### SPH 8K-10K TL-HU-US(B) # 3.7 Earth Connection(Mandatory) Ground cable shall be connected to ground plate on grid side this prevents electric shock. | Model | Wire Size | |------------------------|-----------| | SPH TL-HU-US/(B)8K-10K | 12AWG | If the original protective conductor fails. Please follow below steps to plement Ground cable connection: Please follow below steps to implement Ground cable connection: 1. Remove insulation sleeve 10 mm for wire. 2.Loosen the screw, insert the ground wire and then tighten thee screw. Please make sure that the ground cable is firmly connected to the ground bar. #### **SPH 10000 TL-HU-US** ## SPH 8K-10K TL-HU-US(B) # 3.8 Dip Switch Status | Working condition | Switch status | |--|----------------| | Local upgrade(USB flash drive upgrade) | 1/2:ON;3/4-OFF | | Connect to the build-in datalogger (Default) | 1/2:OFF;3/4→ON | #### **SPH 10000 TL-HU-US** # 3.9 Fan Replacement Please check and clean the fans regularly. The recommended period is 6 months Please replace the fan following up the below diagram if there is problem with the fans. Turn off the system and wait for more than 5 minutes before disassembling the machine. a. Loosen the screws and remove them. b. Remove the fan fixing. c. Pull out the fan bracket completely, and use a soft brush to clean thee fan or replace a damaged fan. - d. Remove the fan and replace it. - e. After the fan is installed, follow the steps just now to push back and assemble it back # 3.10 Wiring System for Inverter In the SPH 10000TL-HU-US(B) version series models. The external circuit breakers on the backup load side, generator side, grid side and battery side are optional. The inverter already has these breakers internally. The specifications are given below. | Inverter Model | SPH 10000TL-HU-US/(B) | SPH 80000TL-HU-US(B) | | |------------------------------|-----------------------|----------------------|--| | PV Breakers(①) | 600V/30A | | | | Battery Breaker(②) | 80V/ | 250A | | | Generator breaker(③) | 240V/63A | 240V/50A | | | Load Breaker(④) | 240V/63A 240V/50A | | | | AC Breaker(⑤) | 240V/100A | | | | On-Grid Home Load Breaker(⑥) | 240V | /100A | | # 3.11 Split Phase(120/240Vac) Parallel Connection For additional details on how to parallel multiple SPH/SPM systems, please refer to: Parallel Solutions technical white paper available at: community.growatt.com/white-paper #### Three inverters in parallel: #### **Power Connection** Master Inverter NO.2 Inverter NO.1 C Phase Inverter NO.3 B Phase Modbus SN: This feature is currently not being used. The status of the Dip Switch needs to be fully turned on. ■ Ex_Meter For CT ■ A Phase ParallelThreeEn ✓ Parallel CT1: Connect pins 3 and 4 of L1 (Inverter NO.1). CT2: Connect pins 5 and 6 of L2 (Inverter NO.1). Allow for 6 machines to be combined. # 3.12 2Pcs Parallel Connection for 120/208 Three Phase (Unbalanced) # Two inverters in parallel: # SPH 8K-10K TL-HU-US(B) # Grid Settings Grid Mode O General Standard ■ IEEE-1547-2018 ■ CA Rule 21 ■ HECO 16H ■ ISO NE2021 ■ PREPA Grid Type 1/20/240V Split Phase ■ 120/260V 3 Phase ■ 127/220V 3 Phase ■ 127/220V 3 Phase # Advanced Functions Advanced Functions Parallel Modbus SN 001 APhase B Phase C Phase Ex_Meter For CT Meter select: APhase B Phase C Phase ParallelThreeEn 2/2 #### **Communication Connection** Modbus SN: This feature is currently not being used. The status of the Dip Switch needs to be fully turned on. CT1: Connect pins 3 and 4 of L1 (Inverter NO.1). CT2: Connect pins 5 and 6 of L2 (Inverter NO.1). CT3: Connect pins 3 and 4 of L2'(Inverter NO.2). This situation can only be set to phase A and B. #### 3.13 3Pcs Parallel Connection for 120/208 Three Phase Three inverters in parallel: Power Connection #### SPH 8K-10K TL-HU-US(B) #### Inverter NO.1 Inverter NO.2 Inverter NO.3 #### **Communication Connection** Modbus SN: This feature is currently not being used. The status of the Dip switch needs to be fully turned on. CT1: Connect pins 3 and 4 of L1 (Inverter NO.1) CT2: Connect pins 5 and 6 of L2 (Inverter NO.1) Ct3: Connect pins 3 and 4 of L1"(Inverter NO.3). # 3.14 6Pcs Parallel Connection for 120/208 Three Phasse Six inverters in parallel: **Power Connection** BMS Lwire —Lwire — Nwire — PEwire ## SPH 8K-10K TL-HU-US(B) #### Inverter NO.1 #### Inverter NO.3 Inverter NO.5 #### Inverter NO.2 Inverter NO.4 Inverter NO.6 #### **Communication Connection** Modbus SN: This feature is currently not being used. The status of the Dip switch needs to be fully turned on. CT1: Connect pins 3 and 4 of L1 (Inverter NO.1). CT2: Connect pins 5 and 6 of L2 (Inverter NO.1). CT3: Connect pins 3 and 4 of L1"(Inverter NO.5). # 4 Operations on The ShineTools APP #### 4.1 Overview ShineTools is a smart APP that could realize the inverter system local commissioning function via the smart phone. It communicates with the inverter through internal Bluetooth or data logger to realize real-time status monitoring, alarm query, parameter configuration, intelligent diagnosis and other routine maintenance functions, is a convenient local configuration platform. - -Real-time status monitoring: Captures the real-time status of inverters and data loggers. - -Alarm query: There are easy-to-operate alarm function and flexible alarm display mechanism could help obtain fault location information quickly, and convenience for customers to take countermeasures timely, improve the efficiency of operation and maintenance. - -Parameter configuration: Simple and safe parameter configuration, and onestop unified configuration can be realized through the data logger. #### 4.2 APP Download Scan the QR code or search for "ShineTools" in Google Play or Apple Store to download and install the APP # 4.3 Login #### Start the APP. - -Choose the end user or O&M account. - -Enter the account and password and log in. End user password is oss+current date (example April 16, 2024 isoss20240416) - -After login successfully, you can check the "Installation Manual" # 4.4 Direct WiFi/Bluetooth Commissioning Tool - -Select the Direct WiFi/Bluetooth Channel. - -Select the corresponding model -
-Scan the device serial number barcode on the right side of the inverter to configure Bluetooth. You can also configure Bluetooth by manually entering the device serial number. - -Enter the Local Commissioning interface. # 4.5 Commissioning of SPH TL-HU-US/(B) 8K-10K Local Commissioning> Quick Setting> Network Type - -Select/fill network, enter the password, and select the server address - -Choose the network configuration method-WiFi. - -Click to connect to the network. #### Tips: The router name and password cannot contain space characters. Only support English input mode characters. 1.Supported punctuation: , ?!:@; +=#/()_-'^*&.\$<>[]{} 2.Unsupported punctuation: ··· ... • € ′ %¥ \. # 4.6 Parameter Setting (Specific to the App display setting items) # **5 Operations on The ShinePhone APP** #### 5.1 Overview The ShinePhone APP is a mobile phone app that locally communicates with the SPH TL-HU-US/(B) 8K-10K, over WiFi to allow for real-time status monitoring, system mode management, performing routine maintenance, and commissioning. After the PV or Power Grid side of the SPH TL-HU-US/(B) 8K-10K is energized, the APP can connect to the inverter in either of the following ways: 1. The mobile phone is directly connected to the Bluetooth inside the SPH TL-HU-US/(B) 8K-10K for local tools. 2. The mobile phone is connected to the SPH TL-HU-US/(B) 8K-10K inverter through the router. (Notice: Do not use this method for the first login). If you need to use this method for remote monitoring and setup, make sure the inverter is connected to the network via the ShineTools (Please refer to 4.5 for the network connection). ## 5.2 APP Download There are three ways to download the ShinePhone APP. # 5.2.1 Scan the QR code Scanning the QR code, then download the APP. #### 5.2.2 APP Store Search for ShinePhone from one of the following app stores in the following list, download the installation package, and install the ShinePhone app by following the in instructions. - -Google Play (Android) - -App store (iOS) #### 5.2.3 Website Log in to our monitoring website https://server-us.growatt.com to download. After the app is installed, the ShinePhone icon is displayed on thee home screen. # 5.3 APP Introduction # 5.3.1 Multiple Languages Supported ShinePhone supports multiple languages. APP language automatically switches according to the user's mobile language. #### 5.3.2 Local Tool You can choose to configure the local debugging tool by clicking the tool low the login interface. Use the debugging tool for real-time device control and for device monitoring. # 5.3.3 Login to ShinePhone Connecting to the inverter Collector to allow for real-time status: monitoring, system mode management, performing routine maintenance, and commissioning. It's also the first step in remote network configuration. - Open the ShinePhone app to register an account, log in to your account after registration is complete-You can switch the App language through the upper right corner-Select country and religion. - -Enter username and password. - -Click "Remember Password" to save your password. - -Click to log in to the homepage. # 5.3.4 Add power station and collector - -Create a power station after logging in to the homepage (Note: Item is marked * are required. Please fill it outcorrectly. - -You can add the collector to the corresponding power station by scanning the collector "SN" number (VCXXXXXXXXXX) - on the right side of the inverter, or you can enter it manually. ## 5.3.5 Main interface display and power station list - After successfully creating a power station and adding a collector, it will automatically jump to the APP main interface. - -Click "Plant" in the lower tab bar to jump to the plant list interface, and click the corresponding plant to view the generation, power and the other parameters of each inverter under each plant. # 5.3.6 Details and parameter settings in the power station -If you need to add, view, delete the datalogger or add a plant, please click the "+"in the upper right corner Note: If the datalogger needs to change the account monitoring, you need to delete the datalogger under the original account, then add the datalogger under the new account. - Click " \rightarrow "to modify the power station details (for example: powerstation name, photovoltaic components, etc.) - Click "!" to quickly view the current working data of the inverter (Scolar voltage/Battery voltage/Grid voltage/Grid frequency/Output voltage/Output frequency). - Click the fault icon in the lower right corner to display the current machine fault information details. -Drag the screen down to see the energy trend graph. This interface can view the current power, SOC usage (only in lithium battery mode) and battery charge and discharge energy. You can also view the daily, monthly, and annual photovoltaic output/feed into the grid/load consumption/gridpowerwithdrawal/self-consumption cumulative electricity. - -In the My device list at the bottom of the interface, you can view the status (signal strength, refresh time, etc.) of all collectors added to the power station. - -You can also enter the detailed parameter reading and control interface of the inverter according to the device serial number. - This interface can display the real-time status of the data, and you can also view the detailed parameters of the inverter, solar energy, grid, battery, and load under the working staatus of the device, as well as the basic parameters of the device itself (For example: serial number, model, firmware version...) - Energy trend graphs can also be found here. For more details, we can click on the icon in the upper right corner to view it. -In the log at the bottom of the interface, you can view the device's historical fault records and fault details. - Equipment control interface: Users can turn on and off the machine on the equipment control interface. Set the maximum charging current, maximum discharge current, inversion time, grid voltage upper limit, grid voltage Lower limit etc. The password is: growatt + current date. (Notice: Do not changge parameters at will as this may cause your inverter to malfunction.) Device editing page: Users can edit device aliases and delete devices. # 6 Operation ## 6.1 Power ON/OFF Once the unit has been properly installed and the batteries are connected well, simply press On/Off button(located on the left side of the case) to turn on the unit. When one of the grid or PV is connected the screen will still light up even if the battery is not connected. In the off-grid state, if this button is not pressed, the inverter will not carry off-grid loads. If it is grid-connected, this button will not affect the power supply of the backup loads. If there is no battery, you can carry off-grid loads after selecting the No Battery Mode. # 6.2 Operation and Display Panel The operation and display panel, shown in below chart, is on the front panel of the inverter. It includes three indicators and a touch screen display, indicating the operating status and input/output power information. | | Messages | | | |--------|----------|---------|---------------| | AC/INV | GREEN | Light | Powered by AC | | | | Twinkle | Powered by DC | | CHARGE | GREEN | Light | Full battery | | | | Twinkle | Charging | | FAULT | RED | Light | Error | | | | Twinkle | Warning | # 7 Main Screen # 7.1 Touchscreen Operation Flow Chart #### 7.2 Main Screen | Icon | Description | |----------------------------------|--| | # | PV | | 48.0V | Battery: Battery Power, Charge(negative),
Discharge(positive) | | • | Inverter | | =0 | Generator | | (\$\displaystyle{\pi}\$) | Setting Menu | | 基本 | Grid: Grid Power , Export(negative), | | * | Load | | <u></u> BMS | BMS communication error | 1.The "Grid-on" in the above of the home screen indicates that the system is Normal operation. If "Fault: F17-64 or Alarm: W01-W96" appears in the upper left corner of the screen, a communication error or other error has occurred in the inverter. F17-F64 faults and W01-W96 alarms, detailed information can be found in the exclamation mark in the upper right corner of the main screen. - 2.At the top of the screen is the time. - 3.System Setup Icon, press this set button, you can enter into the system setup screen which including Basic Settings, Operating Modes, Grid Settings, Generator Settings, Battery Settings and Advanced Functions - 4.The main screen showing the info including Solar, Grid, Load and Battery. Its also displaying the energy flow direction by arrow. - -PV power and Load power always keep positive. - -Grid power negative means sell to grid, positive means get from grid. - -Battery power negative means charge, positive means discharge. - 5. When there is an abnormal BMS communication, a BMS alarm icon will appear in the bottom left corner of the screen. After this alarm occurs, the lithium battery automatically switches to lead-acid battery, but cannot be charged. #### **PV Detail Page** Solar Panel Generation. Power, Voltage, Current for each MPPT. Solar panel energy for Day and Total. #### **Grid Detail Page** By clicking on the Grid icon, you can access the grid details screen. In this screen, you can see the current status of the grid(Stand-by, Import From Grid and Export To Grid), which includes power and frequency. L1-V&L2-V: Grid voltage. CT1&CT2: External current sensor grid power. L-P: Internal current sensor grid power. Import From Grid: Today and total grid output power. Export To Grid: Grid power sold today and in total. The image on the left shows the display screen when using % to measure the remaining power of the battery and make settings. The image on the left shows the display screen when using voltage to measure the remaining power of the battery and make settings. If you use Lithium Battery, you can enter 1-2 page. #### **Inverter Detail Page** Inverter Generation Power and
Frequency. Voltage, Current, Power fo reach phase. **AC-Tem:** Temperature of Heatsink. **DC-Temp:** Temperature of DC-DCmodule. #### **Generator Detail Page** Generator Power, Voltage and Frequency. Generator exportation for Total. #### Load Detail Page In this screen, you can see the voltage, power, daily consumption and total consumption of the load. # 7.3 Setting Menu This is Setting menu detail page. #### 7.4 Basic Settings Factory Reset: Reset all parameters of the Inverter. Lock Out All Changes: Enable this function, the setting will be fixed and can not be changed until this item is disabled. The password for factory reset and lockout all changes are both 9999 # 7.5 Battery Settings Lithium: Choose Lithium for Battery Mode if lithium battery is used. **Battery Capacity:** Enter the size of the battery bank connected to the system. Use Battery V: When using lead-acidbattery, choose Use Battery V if you want to use voltage as the unit of actual battery capacity and do the setup. Use Battery %: When using lead-acidbattery, choose Use Battery %, if you want to use percentage as the unit of actual battery capacity and do the setup **Max Charge/Discharge:** Set the max charge/discharge rate for the batteries. **No Battery:** Tick this item if no battery is connected to the system. **Revive Battery:** If lithium battery is used but the inverter and the battery are incompatible in communication, please enable the Revive Battery function to wake up the battery. If the lithium battery is compatible with the inverter in communication, then the inverter is able to wake the lithium battery when PV or grid is connected whether the Revive Battery function is enabled or not. Recharge (Left): When Automatic Start for generator is enabled and the actual battery capacity is lower than the recharge value, the generator will automatically start and charge the battery. Charge Rate=40 Adc(left): The maximum generator **Gen Charge:** Enable this to allow generator to charge the battery. **Charge Rate = 40 Adc (right):** The maximum grid charging current is 40A. **Grid Charge:** Enable this to allow grid to charge the battery. Lithium Mode: The communication protocol used between the inverter and lithium battery. Please set this according to the Appendix I at the end of user manual. **LBCO:** Low Battery Cut Off. The default value is 20%. The minimum value that can be set is 5%. The set value must match LBCO< LBCO alarm< LBCI, otherwise the setting will not be successful. The inverter will shut off its AC output if the actual battery capacity is lower than this value. The backup load can still be powered by the grid. LBCO Alarm: Low Battery Cut Off Alarm, the inverter will send alarm if the actual battery value reaches this value. The default value is 35%. The minimum value can be set is 10%. The set value must match LBCO < LBCO alarm < LBCI, otherwise the setting will not be successful. **LBCI:** Low Battery Cut In. The inverter AC output will resume if actual battery capacity reaches this value. The default value is 50%. The minimum value can be set is 29%. The set value must match LBCO<LBCO alarm<LBCI, otherwise the setting will not be successful. Float, Absorption, Equalization are three stages of charging the battery. **LBCO 42Vdc:** The inverter will shutdown if the voltage below this value. LBCO Alarm 44Vdc: The inverter will alarm if the voltage below this value. LBCI 46Vdc: After the battery low voltage alarm, the alarm information above 46V is cleared. This is for professional installers, you can keep it if you do not know Recommended battery settings: | Battery Type | Absorption | Float | Equalization | |--------------|-----------------------------------|--------------|--------------| | AGM(or PCC) | AGM(or PCC) 14.4V(57.6V) | | 14.4(57.6V) | | Gel | 14.1V(56.4V) | 13.5V(54.0V) | | | Wet | 14.7V(59.0V) | 13.7V(55.0V) | 14.7(59.0V) | | Lithium | Follow its BMS voltage parameters | | | # 7.6 Operating Modes Please reference technical white paper SPH ESS operating modes for more details on how to set operating modes https://community.growatt.com/white-paper?page=3 Self-consumption Quick Setup: after the setting, the mode is automatically set to Export Limit to Home Load mode→ Enable PV Sell → PV Priority (Load First) → enable Time of Use Time period (24 hours a day) → Check all the week selection parts of the TOU function → battery discharge power (equal to the rated power of the inverter) → SOC21% → Grid Charge to make sure maximize solar power self-consumption, the battery will discharge to power the load before importing the grid power if PV power is insufficient. On Grid Mode: The inverter will sell any excess power produced by the solar panels back to the grid. If you enables the "time of use" function, the battery energy can also be sold into grid. The PV energy will be used to power the load and charge the battery and then excess #### energy will flow to grid. The backup loads and on-grid loads have different priorities. If load first is enabled, the PV will power the backup load first, then charge the battery. If there is excess power being exported to the grid, the on-grid home loads will be powered during this process. Power source priority for the load is as follows: - 1.Solar Panels. - 2.Grid. - 3.Battery. #### General description: - a. The inverter will measure all power from the "GRID" terminal as sell power - b. External CT/Meter is not required for this mode. Even if the CT/Meter is connected, the inverter will not use its data. - c. Enable "ON Grid Mode" function and set the "Max Sell Power"(KW) (How to install CT and set CT. please refer to 3.6 and 7.9) #### Export Limit to Backup Load: Hybrid inverter will only provide power to the backup load connected. The hybrid inverter will neither provide power to the home load nor sell power to grid. The built-in meter will detect power flowing back to the grid and will reduce the power of the inverter only to supply the local load and charge the battery. Enable "PV Sell", it can sell electricity to the power grid. General description not select "PV Sell": - a. The inverter will only cover the loads connected to the "Backup LOAD" terminal. - b. This work mode will not provide power to the "GRID" terminal. - C. This system work mode is recommended for off-grid applications. #### Export Limit to Home Load: Hybrid inverter will not only provide power to the backup load connected but also provide to the home load connected. The backup loads and on-grid home loads shares the same priority. If PV power is insufficient, it will take grid energy as 60 supplement unless TOU or grid peak shaving is set. The hybrid inverter will not sell power to grid. In this mode, a meter/CT is needed. The installation method of the meter please refer to chapter 3.6 Meter or CT connection, The external meter will detect power fowing back to the arid and will reduce the power of the inverter only to supply the local load, charge battery and home load. Enable "PV Sell" it can sell electricity to the power grid. General description "PV sell" disabled: - a. Power is delivered to the whole home without selling the excess solar back to the grid. - b. External CT sensor required for this system work mode. (How to install CT and set CT, please refer to 3.6 and 7.9) - c. Enable "Grid Peak-Shaving" and set "Peak-shaving power(KW)"which is used to set the maximum power that the inverter will draw from its grid power. **PV Sell:** "PV sell" is for Export limit to backup load mode or Export limit to home load mode: When this item is selected, the surplus energy can be sold back to grid. PV Power source priority usage is as follows: load consumption and charge battery and feed into grid. Max Sell Power: Allowed the maximum output power to flow to grid. PV Priority: PV Power source priority. **Battery First:** PV power is firstly used to charge the battery and then used to power the load. If PV power is insufficient, grid will make supplement for battery and load simultaneously. **Load First:** PV power is firstly used to power the load and then used to charge the battery. If PV power is insufficient, grid will make supplement for battery and load simultaneously. **Grid Peak Shaving:** when it is selected, grid output power will be limited within the set value. If the load power exceeds the allowed value, it will take PV energy and battery as supplement, If still can't meet the load requirement, grid power will increase to meet the load needs. Under this working condition, only "Load First" can be selected. (This function can only take effect in Export limit to home load mode): The minimum setting value is 1000W. Time Of Use: It is used to program when to use grid or generator to charge the battery, and when to discharge the battery to power the load. Only tick "Time Of Use" then the follow items (Grid Charge, Gen Time, Power, Battery) will take effect. Using this mode, the inverter is allowed to discharge the battery to the grid or charge it to the battery within a specific time frame. #### General description: a. During the setting hours the system will discharge the batteries to deliver power charge the batteries from the external AC power. All time intervals are automatically enabled. b. Enable "Time of Use" function and set the Forced discharge time to discharge the batteries to deliver power. **Note:** when in ON Grid Mode and click time of use, the battery power can be sold into grid **Grid Charge:** Utilize grid to charge the battery in a time period. **Gen:** Utilize diesel generator to charge the battery in a time period. **Time:** The time displayed on the inverter, range of 00:00-23:59. **Power:** Max discharge power of battery allowed. **Battery(V or SOC %):** Battery SOC % or voltage at when the action is to happen. The setting range is 41 to 54V or 21% to 100%. This setting needs to be greater than the LBCO alarm into the battery settings. **Gen:** The generator does not currently
support Time Of Use. For example: During 09:00-18:00, when battery SOC is lower than 80% it will use grid to charge the battery until battery SOC reaches 80%. During 18:00-09:00, when battery SOC is higher than 80%, hybrid inverter will discharge the battery until the SOC reaches 80%. **Battery:** The setting range is 21% to 100%. Week setting: The TOU function will only take effect after selecting the week. Seasons: Enable Button(After selecting this option, Season 1,2,3 will only take effect. Season1,2,3: Automatically select based on the current time period. Start M-D: Time on. End M-D: End Time. # 7.7 Grid Settings **Grid Mode:** Please follow the local grid code and then choose the corresponding grid standard. **Grid Type:** Set the Grid Type. **Grid Frequency:** Set the grid frequency. **Reconnection time:** The waiting time period for the inverter to connect the grid again. **PF:** This is used to adjust the inverter's reactive power. **Enter Service Frequency/Voltage:** Grid-connected voltage frequency range. **Grid Freqency/ Voltage Range:** Grid voltage frequency protection range. **Q(V):** It adjusts the inverter reactive power according to the set grid voltage. This function adjusts inverter output (active and reactive) power when grid voltage changes. **FW:** This series inverter is able to adjust inverter output power according to grid frequency. **VW:** It adjusts the inverter active power according to the set grrid voltage. **HV1:** Level 1 overvoltage protection point. **HV2:** Level 2 overvoltage protection point. HV3: Untapped. **LV1:** Level 1 undervoltage protection point. **LV2:** Level 2 undervoltage protection point. LV3: Untapped. **HF1:** Level 1 over frequency protection point. **HF2:** Level 2 over frequency protection point. **HF3:**Untapped. **LF1:** Level 1 under frequency protection point. **LF2:** Level 2 under frequency protection point. LF3: Untapped. **14.64s:** Trip time. #### 7.8 Generator Settings #### Generator Rated Power: Allowed Max. power from diesel generator. Automatic Start: In this mode, the inverter will automatically turn on the generator when the Recharge value is lower than the Battery Settings-Page 2. When the grid is present or the Maximum Run Time set on the Generator Setting-Page 2 is reached, the generator will be turned off. When using this function, make sure that the generator has an automatic start (ATS) function. **Manually Start:** When this function is checked, the generator will be forced to start. When using this function, make sure that the generator has the automatic start (ATS) function. Smart Load: Allows load to be connected to this port as Smart Load. The inverter will shut off the power supply of the smart load when the battery SOC/voltage drops to the OFF value, and the power supply will resume when the battery SOC/voltage reaches the ON value. If On Grid Always ON is enabled, the inverter will always provide power to the smart load if the grid is connected. **For AC Coupled Input to Gen:** Allows other PV inverter to be connected to the generator port. In this mode, the OFF value represents the voltage/SOC when the AC Couple function is turned off, and the ON value represents the voltage/SOC when the AC Couple function is turned on **AC Couple Frequency high:** represents the highest frequency that the inverter can increase when the AC Couple function is turned on. It is recommended to be the same as the first-order grid-off frequency specified in the current grid regulations. AC Couple on Load Side: Reserved. **High/Low Voltage Limit:** Generator-connected voltage range. High/Low Frequency Limit: Generator-connected frequency range. Warmup Time: After startup, the amount of time the generator runs(no-load) before the inverter is connected to the generator. **Cooldown Time:** The amount of time the generator runs (no load after the shutdown command is issued before the generator is actually shut down. **Maximum Run Time:** When automatically started, the cumulative time allowed for continuous operation of the generator within 24 hours. The generator can be operated manually for any length of time #### 7.9 Advanced Functions The password for entering this pages is 7777. **Solar Arc Fault ON:** This is AFCI function. BMS_Err_Stop: When the Battery Mode is Lithium a) enable this function, the inverter will disconnect its output and send BMS error if the battery communication is abnormal. The output will be resumed after the communication is restored b) disable this function, the Battery Mode will be changed to Use Batt V if the battery communication is abnormal, and the battery can only be discharged, not be charged. **Signal ISLAND MODE:** when the inverter connects grid, the ATS port will output 240Vac and it is used to cuts off Earth-Neutral(load port N line) bond via connect external relay. When the inverter disconnects from the grid, ATS port voltage will be 0 and the Earth-Neutral bond keeps on, More details, please refer to above picture. Clear Arc Fault: Clear AFCI error messages. Backup Delay: Reserved. Gen Peak-shaving: Reserved. CT Ratio: The inverter support 6 ratios of CT clamp-1500: 1, 2000:1, 2500:1, 3000:1, 4000:1 and 7500:1, The CT Ratio of the CTs in the accessory bag in US alone is 4000:1.The CT ratio used in parallel connection is set according to the actual CT used. For example, if 100A/50mA is marked on the CT, it means the CT ratio is 2000:1. CT direction: Section of CT direction **Parallel:** This is the inverter's parallel function interface setting. **Ex_Meter For CT:** This is the CT setting for the inverter, please leave it unchecked. **ParallelThreeEn:** This model enables the three-phase function of the group by setting specific grid regulations. This setting is useless Modbus SN: To be developed. Meter Select: Selection of electric meter. Maximum allowed current at busbar: Maximum value of busbar protection current. Fail Safe Current: Can set the fault safety current value. #### 7.10 Device Info. **Inverter ID:** This is the ID of the inverter HMI/M1/M2 Ver: This is the software version number of the inverter **LCD Ver:** LCD Version. **Clear Record:** Clear error alarm messages. # **8 Error Information and Processing** Error codes are divided into Warning codes and fault codes. Warning codes identify the current statues of the inverter (Max), it codes not affect the normal running of the inverter When a numeric warning appears on the Main Screen, it can usually be cleared through orderly shutdown/re-set or self-corrective action performed by the inverter. Fault codes identify the possible equipment failure. incorrect setting or configuration of the inverter, all attempts to clear the fault code must be performed by qualified personnel. Typically, error codes can be cleared. Some of error code as table shows below. | Auditing routine | Error
Code | Description | Solutions | |-----------------------------|---------------|-------------------------|--| | | W83 | PV Volt Over
Warning | 1.Check whether the PV voltage is greater than 525V. 2.If alarm message still exists, contact manufacturer. | | | W89 | PV Over Load | 1.Check whether the single-channel PV power exceeds 11 KW. 2.If alarm message still exists, contact manufacturer. | | About PV | F33 | PV Current
Over | 1.Check the connection between the PV module and the battery module.2.Reduce the number of load connections in offgrid mode.3.If the fault persists, contact the manufacturer. | | | F39 | Self Check
Fault | 1.Restart the inverter.
2.If the fault persists, contact the manufacturer. | | | F40 | PV Voltage
Over | 1. Check whether the actual PV voltage is consistent with the Main Screen. 2. Check whether the PV string voltage (Voc) is higher than the maximum input voltage of the inverter. If yes, adjust the number of PV modules in series to reduce the PV series voltage. 3. If the fault persists, contact the manufacturer. | | | W68 | Grid Relay
Warning | 1.Restart the inverter. 2.If alarm message still exists, contact manufacturer. | | About
Grid、
Generator | W71 | Gen Overload
warning | 1.Check whether the generator power exceeds 10 kW. 2.If alarm message still exists, contact manufacturer. | | | F26 | Grid Type Fault | 1.Restart the inverter. 2.If the fault persists,contact the manufacturer. | | | | | T | |-------------------|-----|----------------------------------|---| | | W01 | Fan lock
warning | Check fan wiring after shutdown. Start alarm message still exists, contact manufacturer. | | | W03 | LCD Connect
warning | 1.Check LCD wiring after shutdown. 2.If alarm message still exists, contact manufacturer. | | | W04 | USB Connect
warning | 1.Check USB wiring after shutdown.
2.If alarm message still exists, contact
manufacturer. | | | W10 | RSD Stop
Press Alarm | Check if the emergency stop button is pressed. Z.If alarm message still exists, contact manufacturer | | | W12 | MDSP update
alarm | 1.Check if the machine is in the process of upgrading. | | | W13 | | 2.If alarm message still exists, contact manufacturer. | | | W67 | Inverter
Relay
Warning | 1.Restart the inverter. 2.If alarm message still exists, contact manufacturer | | About
inverter | W70 | GFCI Warning | 1.Restart the inverter. 2.If alarm message still exists, contact manufacturer. | | | W73 | MDSP-METER
Connect
warning | 1.Check meter wiring after shutdown
2.If alarm message still exists, contact
manufacturer. | | | W88 |
AFCI Curr
Over Warning | 1.Shut down and check for poor contact or tearing of PV component wires. 2.If the fault persists,contact the manufacturer. | | | W90 | Insulation
Low | 1. After shutdown, check if the panel shell is reliably grounded 2. If alarm message still exists, contact manufacturer | | | W91 | AFCI
Communicati
on fail | 1. After shutdown, check if the AFCI line inside the machine has fallen off 2. If the fault still exists, please contact us for help. | | | W92 | AFCI selftest
fail | 1.Restart inverter. 2.If the fault persists, contact the manufacturer. | | | F18 | Inverter Over
Curr Fault | Check if the load is within the power range. Restart the inverter. If the fault persists, contact the manufacturer. | | | | F19 | MSDSP Connect
Fault | 1.Restart the inverter. 2.If the fault persists, contact the manufacturer. | |--|-------|-----|--|--| | | | F24 | Inverter
Voltage Fault | 1. Test if the actual output inverter voltage is consistent.1.Restart the inverter. 2.If the fault persists, contact the manufacturer. | | | | F27 | GFCI Fault | 1.Restart the inverter. 2.If the fault persists, contact the manufacturer. | | | | F34 | Bus Volt Over | | | | | F35 | Bus Volt
Unbalance | 1.Restart the inverter. 2.If the fault persists, contact the manufacturer. | | | | F41 | Heat Sink High
Temperature
Failure | 1. Check that the inverter is not installed in a place where the sunshines, and ensure that the inverter is installed in a cool and ventilated place. | | | | F42 | Transfer
Temperature
Over | 2.Check whether the working temperature is too high, and make sure that the inverter is installed vertically 3.Turn off the inverter for 10 minutes, then restart the inverter 4.If the fault persists, contact the manufacturer | | | | F45 | BUS Start Error | Restart the inverter. If the fault persists, contact the manufacturer. | | | | F49 | M3MDSP
Connect Fault | 1.Shut down and check whether the communication line is firmly connected. 2. Restart the inverter 3.If the fault persists, contact the manufacturer. | | | • | F53 | Version
Different | 1.Restart the inverter. 2.If the fault persists, contact the manufacturer. | | | About | W65 | Output Short
Warning | 1.Output is short circuit. 2.Shut down and restart to check whether the machine can work normally 3.If alarm message still exists, contact manufacturer. | | | Load | W66 | Output
Overload
Warning | 1.Check whether the output is short-circuited. 2.Shut down and restart to check whether the machine can work normally 3.If alarm message still exists, contact manufacturer. | | | W76 | Smart Load
Warning | 1. Check if the Gen port is connected to the load or generator If it is a generator, modify the machine settings to generator mode. If it is a load, please restart the machine. 2. If alarm message still exists, contact manufacturer. | |------------------|-----|---------------------------------|---| | | W77 | Smart Load Over
Load Warning | 1.Check whether the output is short-circuited. 2.Shut down and restart to check whether the machine can work normally 3.If alarm message still exists, contact manufacturer. | | | F21 | Output Short | 1. Check if the load is short circuited. 2. Restart the inverter. 3. If the fault persists, contact the manufacturer. | | | F22 | Output Over Load | 1. Check if the load is within the power range.2.Restart the inverter.3.If the fault persists, contact the manufacturer. | | | F23 | Output Over Curr | Restart the inverter. If the fault persists, contact the manufacturer. | | About
Battery | W14 | BMS update alarm | Check if the machine is in the process of upgrading. If alarm message still exists, contact manufacturer. | | | W16 | BMS update
parameter alarm | 1.Pleaseset the 'Lithium Mode' to 01 in the
Battery Settings on the LCD, then proceed
with the battery upgrade.
2.If alarm message still exists, contact
manufacturer | | | W69 | Bat Energy
Warning | 1.Please charge for 10 minutes before inverter. 2.If alarm message still exists, contact manufacturer. | | | W82 | Bat Volt Low
Warning | Check if the battery voltage is too low If alarm message still exists, contact manufacturer. | | | W87 | Battery Missing
Warning | 1.There is no electric voltage at the input end of the machine battery. 2.After confirming that the battery voltage is normal, turn on the machine to check | | |-------------------|-----|-------------------------------|---|--| | | | | whether it can work normally.
3.If alarm message still exists, contact
manufacturer. | | | | F36 | Battery Voltage
Over | 1.Check whether the actual connected battery voltage is consistent with the display. 2.If the battery voltage is too low, use photovoltaic on commercial power to charge the battery. If the battery voltage is too high, please connect to a battery within the required range. 3.If the fault persists, contact the manufacturer. | | | | F37 | Bat Charge Current
Over | Check whether the actual battery current is consistent with the display. Restart the inverter. | | | | F38 | Bat DisCharge
Current Over | 3.If the fault persists, contact the manufacturer. | | | | F51 | M3BMS Connect
Fault | 1.Shut down and check whether the communication line is firmly connected.2.Restart the invert.3.If the fault persists, contact the manufacturer. | | | | F57 | BMS Fault | 1.Restart the inverter. | | | | F58 | Battery Mode Fault | 2.If the fault persists, contact the manufacturer. | | | | W05 | Parallel Grid
different | 1. After shutting down the inverter, check if the grid power supply cables are correctly connected. 2. If the warn persists, contact the manufacturer. | | | About
Parallel | W06 | Parallel Phase
Error | 1. After disconnecting the grid power supply from the inverter, check whether the grid connection phase sequence matches the parallel operation settings on the Main Screen. 2. Restart the inverter. 3. If the warn persists, contact the manufacturer. | | | | W07 | Op Phase Loss
Error | 1. Check if the parallel operation parameters settings on the inverter's LCD interface are correct. 2. Restart the inverter. 3. If error message still exists, contact manufacturer. | |--|-----|-------------------------------|--| | | W08 | Parallel version
different | If the warn still exists, please contact us for help. | | | F29 | Parallel Setting
Fault | 1.Check if the master-slave settings in the parallel operation settings on the LCD interface of the inverter are correct. 2.Restart the inverter. 3.If error message still exists, contact manufacturer. | | | F31 | Parallel CN-AC
Phase Order | 1.Restart the inverter. 2.1f error message still exists, contact manufacturer. | | | F54 | Can Fault | 1. After shutting down the inverter, check if the parallel communication cables are securely and correctly connected. 2. Restart the inverter. 3. If error message still exists, contact manufacturer | | | F55 | Host Loss | 1.Restart the inverter. 2.If error message still exists, contact manufacturer. | | | F59 | Parallel BMS
Connect Error | 1.Connect the BMS communication cable to the 'Master Phase A port of the inverter. 2. Restart the inverter. 3.If error message still exists, contact manufacturer | # 9 Data Sheet | Model | SPH 8KTL-HU-
US(B) | SPH 10KTL-HU-
US | SPH 10K TL-HU-
US(B) | | |---|-------------------------------------|---------------------|-------------------------|--| | PV Input Data | | | | | | Max Recommended PV
Power | 15000W | | | | | DC/AC Ratio | 1.875 | 1.5 | 1.5 | | | PV Input Voltage(V) | | 370V(130V-525V) | | | | MPPT Range(V) | | 150V-450V | | | | Start-up Voltage(V) | | 130V | | | | PV Input Current(A) | | 22A+22A+22A | | | | Max. short-circuit current
per MPP tracker | | 27A | | | | No. of MPPT Trackers | | 3 | | | | No. of PV strings per MPPT
trackers | | 2/2/2 | | | | Battery Data | | | | | | Battery Type | L | ead-acid or Li-lon | | | | Nominal Voltage(V) | | 48V | | | | Battery Voltage Range(V) | 40-60V | | | | | Max. Charging Current(A) | 190A | 200A | 200A | | | Max. Discharging | 190A | 200A | 200A | | | output Data (On Grid) | | | | | | Rated Voltage | 120/240Va.c.(split phase), 208Va.c. | | | | | Continuous power output(W) | 8000W | 10000W | 10000W | | | Nominal Output | 33.4A | 41.7A | 41.7A | | | Max. AC Current(A) | 40A | 50A | 50A | | | Power Factor | 0.8 leading to 0.8 lagging | | | | | Output Frequency | 60Hz | | | | | Grid Type | Split phase | | | | | Maximum Grid Bypass
Current | 62.5A | | | | | THDI | | <3% | | | | Backup Power (Off Grid) | | | | | | Rated Voltage | 120/240\ | Va.c.(split phase), | 208Va.c | | | AC Nominal Output
Power(W) | 8000W | 10000W | 10000W | | | Peak Power(grid off) | 1.5 ti | mes of rated powe | r, 5s | | | , | | | | | | AC Output Rated Current(A) | 33.4A | 41.7A | 41.7A |
--------------------------------|-------------------------------------|------------------|---------------| | Output Frequency | 60Hz | | | | Switch Time | | <10ms | | | Efficiency | | | | | Max. Efficiency | | 98.10% | | | Euro Efficiency | | 97.60% | | | MPPT Efficiency | | 99.90% | | | Protection | | | | | PV Switch | | Yes | | | BAT reverse protection | | Yes | | | Output over current protection | | Yes | | | AC short-circuit protection | | Yes | | | PV Input Lightning Protection | | Yes | | | Anti-islanding Protection | | Yes | | | PV String Input Reverse | | Ves | | | Polarity Protection | | Yes | | | Insulation Resistance | Yes | | | | Monitoring | | | | | Residual Current Monitoring | | Yes | | | Unit | | | | | AFCI protection | | Yes | | | Surge Protection | DC Type II / AC Type II | | | | Certifications and Standards | 1547-2003.IEEE 1547-2018.CA Rule 21 | | | | Grid support regulation | HECO 14H、ISO NE2021、PREPA | | | | Safety | IEC62109-1, IEC62109-2 | | | | EMC | 1000-6-1, EN | l61000-6-3, FCC | Part 15 Class | | General Data | | | | | Operating Temperature | -25~ | 60°C , >45°C Der | ating | | Range(°C) | | Cmart cooling | | | Cooling | Smart cooling | | | | Noise(dB) | <30 dB | | | | Communication with BMS | RS485: CAN | | | | Weight(kg) | 42.5 | | | | Size(mm) | 457.2W*874H*255.6D | | | | Protection Level | IP65/NEMA 4 | | | | Installation Style | Wall-mounted | | | | Warranty | | 10 years | | # 10 Appendix I Approved battery brand from Growatt. | Brand | Model | RS485 or CAN | Inverter Setup | |---------|-------------------|--------------|----------------| | | ALP 5.0L-E2-US | CAN | 01 | | GROWATT | AXE 5.0L-C1 | CAN | 01 | | GROWAII | LIODE E EL A1 | RS485 | 00 | | | HOPE 5.5L-A1 | CAN | 01 | | CACOLAR | CTD F F A1 | RS485 | 00 | | SACOLAR | STR 5.5-A1 | CAN | 01 | | Enersys | OGHB 1548-Li | CAN | 02 | | TOPBAND | TB48100F-T110AD | RS485 | 03 | | PYLON | Pylontech-US3000C | CAN | 04 | Please check the complete battery matching list on the official website, official website link: https://community.growatt.com/upload/file/Growatt_Approved_LV_Battery_List .pdfraw=Growatt_Approved_LV_Battery_List.pdf # 11 Appendix II | NO. | BMS | |-----|--------| | 1 | RS485B | | 2 | RS485A | | 3 | / | | 4 | CAN-H | | 5 | CAN-L | | 6 | GND | | 7 | / | | 8 | / | | | | - 1. Pass the BMS communication cable through the magnetic ring and wrap it around the magnetic ring four times. - 2. Please use the BMS communication cable provided by the corresponding battery manufacturer. # 12 Appendix III #### CT installation recommendation | CT
model | CT
ratio | CT
aperture | Property | Recommendation system | |-------------|-------------|----------------|---------------------------|--| | 250A | 4000:1 | 37mm | Standard
configuration | split-phase system
2PCS three-phase parallel systems
3 PCS three-phase parallel systems
2-3 PCS split-phase parallel system | | 500A | 7500:1 | 37mm | Additional
purchase | 4-6PCS split-phase parallel systems
6PCS three-phase parallel systems | # 13 Appendix IV #### Meter installation recommendation | Meter type | Property | Recommendation system | | |---------------|---------------------|--------------------------------------|--| | AGF-AE-D/200 | Additional purchase | Enlit phase system | | | SDM630MCT | Additional purchase | Split-phase system | | | SDM630MCT | Additional purchase | 2-6 PCS three-phase parallel systems | | | 30141030141C1 | Additional purchase | 2-6 PCS split-phase parallel systems | | # 14 Appendix V #### FCC COMPLIANCE STATEMENT: This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: - (1) This device may not cause harmful interference. - (2) This device must accept any interference received, including interference that may cause undesired operation Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures Reorient or relocate the receiving antenna. Increase the separation between the equipment and receiver Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. Consult the dealer or an experienced radio/TV technician for help. Warning: Changes or modifications to this unit not expressly approved by the part responsible for compliance could void the user's authority to operate the equipment. #### FCC Radiation Exposure Statement The device has been evaluated to meet general RF exposure requirement. The device can be used in mobile(min20cm) exposure condition. # 15 Appendix VI #### Certificates With the appropriate settings, the unit will comply with the requirements specified in the following standards and directives (dated: Aug./2024): | Model | | |---------------------------|--| | SPH 10000TL-HU-US | IEEE1547, CA RULE21, RULE14(HECO Compliant),
UL1741, UL17741SA/SB, CSA C22.2, PREPA,
UL1699B, UL1741 CRD, FCC Part15 Class B,
Sunspec | | SPH 8000-10000TL-HU-US(B) | IEEE1547, CA RULE21, RULE14(HECO Compliant),
UL1741, UL1741SA/SB, CSA C22.2, PREPA,
UL1699B, UL1741 CRD, FCC Part15 Class B,
Sunspec |